NAME: Clinton YANAYACO LAUREANO

UNIVERSITY: PUCP-PERU

GROUP: PAQARIY GREEN REVOLUTION

TYPE: GREENEST CHALLENGE: 27

THEORY OF CHANGE: GREENING LIMA'S DESERT THROUGH HYDROPONIC INNOVATION

We evaluate to link each column, so we can face each trouble with a strategy, targets and out comes related

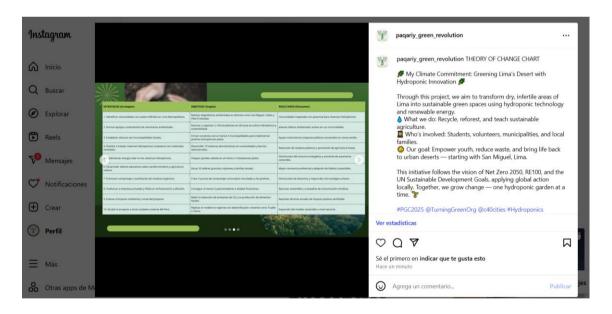
STRATEGIES	TARGETS	OUTCOMES
1. Identify communities with infertile soils in Lima	Conduct environmental assessments in San Miguel,	Communities mapped with hydroponic development potential.
Metropolitan Area.	Callao, and Villa El Salvador(disctrict of pErú).	nydropome de veropinem potentian.
2. Form university volunteer environmental teams.	Recruit and train 100 students in hydroponic and sustainability techniques.	Youth leaders engaged in community-based climate action.
3. Establish partnerships with local municipalities.	Sign agreements with at least 3 municipalities to develop pilot hydroponic gardens.	Institutional support and public green spaces created.
4. Design and install modular hydroponic systems using recycled materials.	Build 10 demo systems in universities and local neighborhoods.	Reduction in plastic waste and promotion of clean agriculture.
5. Implement solar energy in hydroponic systems.	Integrate solar panels into at least 5 pilot systems.	Lower energy consumption and sustainable autonomy achieved.
6. Conduct educational workshops on climate change and urban agriculture.	Deliver 20 free workshops for youth and families.	Increased environmental awareness and sustainable living habits.
7. Promote composting and reuse of organic waste.	Set up 5 community composting points linked to hydroponic gardens.	Reduction in organic waste and improvement in urban ecological cycles.
8. Engage private companies and NGOs for funding and outreach.	Secure at least 5 sponsors or partners to support the initiative.	Long-term financial and community sustainability achieved.
9. Evaluate the environmental and social impact.	Measure CO ₂ reduction and local food production improvements.	Verified annual reports showing measurable positive impact.
10. Scale the project to other coastal Peruvian cities.	Expand the model to desertification-prone areas such as Trujillo and Tacna.	Nationwide replication of sustainable urban agriculture.

NAME: Clinton YANAYACO LAUREANO

UNIVERSITY: PUCP-PERU

GROUP: PAQARIY GREEN REVOLUTION

TYPE: GREENEST CHALLENGE: 27



References

- C40 Cities. (2021). *Net Zero 2050: Climate Action Framework for Cities*. https://www.c40.org/
- United Nations. (2015). *Sustainable Development Goals (SDGs)*. https://sdgs.un.org/
- Plastic Free Foundation. (2020). *Plastic Free July Global Challenge Report*. https://www.plasticfreejuly.org/
- Amazon & Global Optimism. (2019). *The Climate Pledge*. https://www.theclimatepledge.com/
- UNFCCC. (2020). *Race to Zero Campaign*. https://unfccc.int/climate-action/race-to-zero-campaign
- Bioregional. (2003). *One Planet Living Principles*. https://www.bioregional.com/
- The Climate Group. (2014). *RE100: 100% Renewable Energy Initiative*. https://www.there100.org/
- COP26. (2021). Global Methane Pledge. https://www.globalmethanepledge.org/

POST:

SLIDES

NAME: Clinton YANAYACO LAUREANO

UNIVERSITY: PUCP-PERU

GROUP: PAQARIY GREEN REVOLUTION

TYPE: GREENEST CHALLENGE: 27

NAME: Clinton YANAYACO LAUREANO

UNIVERSITY: PUCP-PERU

GROUP: PAQARIY GREEN REVOLUTION

TYPE: GREENEST CHALLENGE: 27

STRATEGIAS (Strategies)	OBJETIVOS (Targets)	RESULTADOS (Outcomes)
Identificar comunidades con suelos infértiles en Lima Metropolitana.	Realizar diagnósticos ambientales en distritos como San Miguel, Callao y Villa El Salvador.	Comunidades mapeadas con potencial para sistemas hidropónicos.
2. Formar equipos universitarios de voluntarios ambientales.	Reclutar y capacitar a 100 estudiantes en técnicas de cultivo hidropónico y sostenibilidad.	Jóvenes líderes ambientales activos en sus comunidades.
3. Establecer alianzas con municipalidades locales.	Firmar convenios con al menos 3 municipalidades para implementar jardines hidropónicos piloto.	Apoyo institucional y espacios públicos convertidos en zonas verdes.
 Diseñar e instalar sistemas hidropónicos modulares con materiales reciclados. 	Desarrollar 10 sistemas demostrativos en universidades y barrios seleccionados.	Reducción de residuos plásticos y promoción de agricultura limpia.
5. Implementar energía solar en los sistemas hidropónicos.	Integrar paneles solares en al menos 5 instalaciones piloto.	Disminución del consumo energético y aumento de autonomía sostenible.
 Desarrollar talleres educativos sobre cambio climático y agricultura urbana. 	Dictar 20 talleres gratuitos a jóvenes y familias locales.	Mayor conciencia ambiental y adopción de hábitos sostenibles.
7. Promover compostaje y reutilización de residuos orgánicos.	Crear 5 puntos de compostaje comunitario vinculados a los jardines.	Disminución de desechos y mejora del ciclo ecológico urbano.
8. Involucrar a empresas privadas y ONGs en la financiación y difusión.	Conseguir al menos 5 patrocinadores o aliados financieros.	Recursos sostenibles y campañas de comunicación climática.
9. Evaluar el impacto ambiental y social del proyecto.	Medir la reducción de emisiones de CO ₂ y la producción de alimentos locales.	Reportes técnicos anuales de impacto positivo verificable.
10. Escalar el proyecto a otras ciudades costeras del Perú.	Replicar el modelo en regiones con desertificación creciente como Trujillo o Tacna.	Expansión del modelo sostenible a nivel nacional.