BIOMIMICRY

by sustainovators

Team Members:

Amoani-Antwi Charles

Bekoe Papa Offei Obuobisah

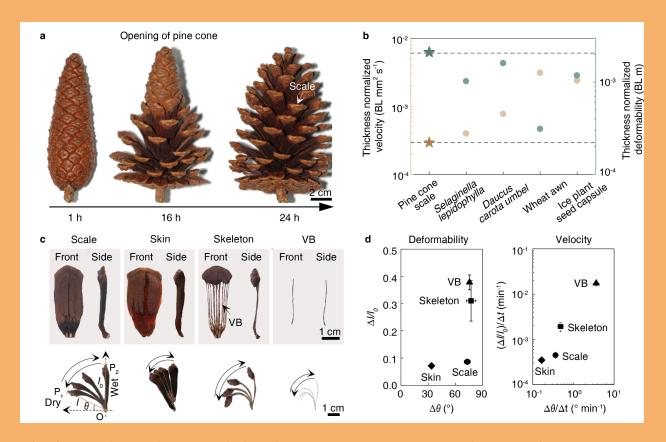
Ewurama Nhyira Acquaah

Username: caamoani

Schools: Kwame Nkrumah University of Science and Technology & University of

Mines and Technology.

What is biomimicry?


Biomimicry is the practice of learning from and imitating nature's designs, systems, and processes to solve human problems in sustainable ways.

In simple terms, it means using nature as a model, mentor, and measure for innovation. Instead of trying to "outsmart" nature, biomimicry studies how plants, animals, and ecosystems have solved challenges over millions of years and applies those lessons to technology, architecture, product design, and more.

A BIOLOGICAL PROCESS THAT FASCINATES ME

Pine Cone Hygroscopic Mechanism

The pine cone is a masterful, low-energy actuator. It can repeatedly open and close its scales to either protect its seeds from unfavorable wet conditions or release them when the weather is dry and windy, which is ideal for dispersal. This movement is entirely passive, requiring no energy input from the tree. Instead, it is driven by a direct and elegant response to changes in ambient humidity. This hygroscopic (moisture-driven) mechanism is a prime example of how nature uses material structure to create function without complex controls or external power.

The figure shows the typical slow hygroscopic geometric reshaping of a pine cone and its hierarchical components. Source: https://communities.springernature.com/

The Underlying Mechanism

The pine cone's ability to move is rooted in the sophisticated, bilayer architecture of its scales. Each scale is not a uniform piece of material but is composed of two distinct layers of tissue that respond differently to moisture.

Bilayer Structure: The key to the movement lies in a functional bilayer at the base of each scale. This structure consists of an outer, active layer of sclereid cells and an inner, resistance layer of sclerenchymatous fibers. These two layers are bonded together, functioning much like a bimetallic strip that bends in response to heat, except the pine cone responds to humidity.

Cellulose Microfibril Orientation: The differential response is controlled by the orientation of stiff cellulose microfibrils within the cell walls of each layer.

In the outer (active) layer, the cellulose microfibrils are aligned predominantly perpendicular to the long axis of the scale. When the cells in this layer absorb moisture from humid air, they swell. Because the stiff fibrils resist expansion along their length, the swelling is directed perpendicular to them, causing the entire layer to expand significantly in length.

In the inner (resistance) layer, the microfibrils are aligned parallel to the scale's axis. When this layer absorbs moisture, the parallel fibrils restrict expansion along the scale's length.

Passive Actuation: This difference in expansion creates mechanical stress. As the outer layer elongates in high humidity while the inner layer remains relatively stable, the entire scale is forced to bend inward, causing the pine cone to close. Conversely, when the air becomes dry, the outer layer loses water and shrinks, pulling the scale open to release its seeds. This entire process is a reversible, physical behavior occurring in the dead tissues of the cone.

Bio-Inspired Solution: Adaptive Climate Architecture

The pine cone's mechanism provides a blueprint for creating hygromorphic materials, materials engineered to change shape in response to moisture. This principle can be applied to develop adaptive architectural systems that operate with zero energy consumption.

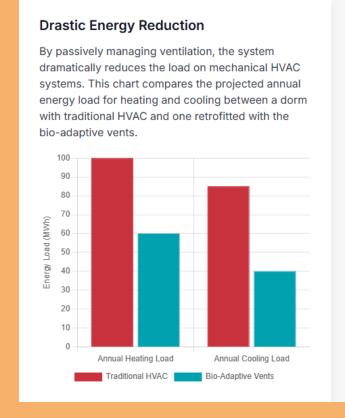
My design is to create a climate-responsive ventilation system for university dorms. By fabricating panels from wood veneers or composites with specifically oriented fibers that mimic the pine cone's bilayer, it's possible to create building elements that are both sensor and actuator. These panels could be designed to:

- Open automatically during cool, dry nights to allow for natural ventilation, reducing the need for air conditioning.
- Close automatically during hot, humid days to block solar gain and prevent

moisture from entering the building.

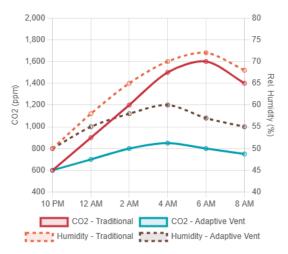
Such a system would be low-cost, low-maintenance, and completely silent, adjusting the building's breathability in direct response to the local climate without needing any sensors, motors, or electricity.

Features

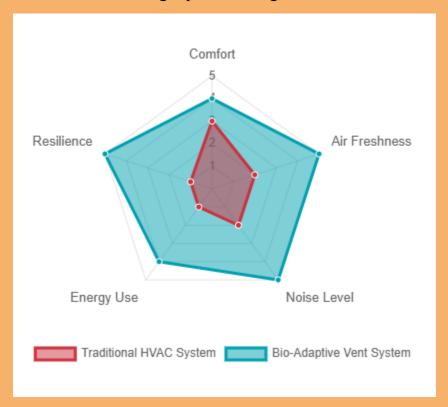

The system uses louvers made of a special hygromorphic composite. These louvers automatically open and close based on the indoor air quality, creating a "breathing" building skin that passively manages air exchange.

If indoor air is STALE (High Humidity > 60%)

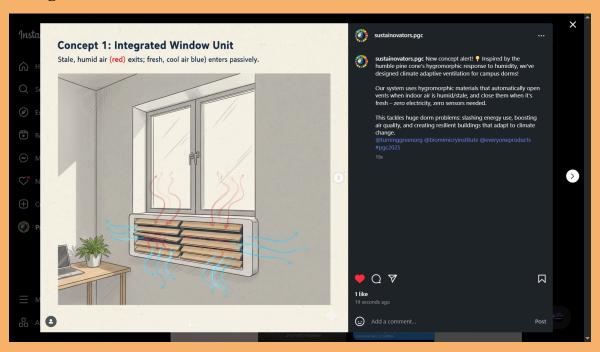
Stale air from breathing, showers, and cooking raises indoor humidity. The hygromorphic material absorbs this moisture and physically bends, **OPENING** the vent to exhaust the stale, humid air.


If indoor air is FRESH (Low Humidity < 50%)

As fresh, dry air circulates, the material releases its moisture and straightens, **CLOSING** the vent to conserve heat and energy.

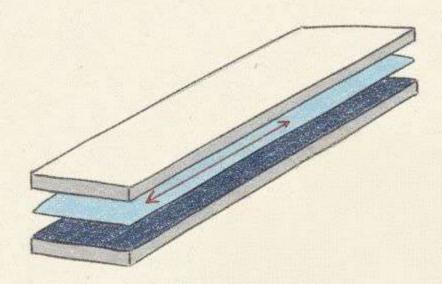


Improved Indoor Air Quality (IAQ)

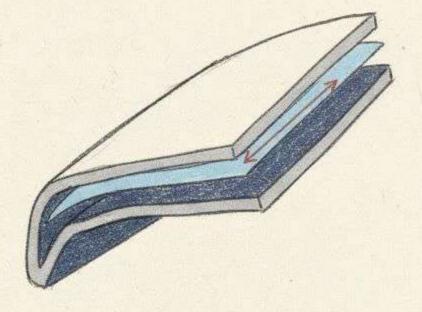

Poor IAQ is a major health concern in dorms. This simulation shows how CO2 and humidity levels build up overnight in a standard dorm room, versus how the adaptive system passively regulates them, keeping them within a healthy, comfortable range without mechanical intervention.

The advantages extend beyond simple metrics. The below comparison highlights the qualitative and quantitative improvements, including enhanced student comfort, silent operation (no fans), and unparalleled resilience; the system continues to ventilate even during a power outage.

Instagram Post:


Concept 1: Integrated Window Unit

Stale, humid air (red) exits; fresh, cool air blue) enters passively.



Concept 2: Louver Mechanism (Close-up)

State 1: DRY (Low Humidity) - CLOSED State 2: HUMID (High Humidity) - OPEN

Material is straight, blocking airflow.

Material bends to allow passive airflow.

Movement is driven by differential material expansion — NO power or motors.

Concept 3: Exterior Facade Integration

Seamlessy integrated panels preserve architectural aesthetics while enabling passive, climate-adpative ventilation.